Extensions 1→N→G→Q→1 with N=C32 and Q=Dic12

Direct product G=N×Q with N=C32 and Q=Dic12
dρLabelID
C32×Dic12144C3^2xDic12432,468

Semidirect products G=N:Q with N=C32 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C32⋊Dic12 = He33Q16φ: Dic12/C4D6 ⊆ Aut C3214412-C3^2:Dic12432,86
C322Dic12 = C333Q16φ: Dic12/C6D4 ⊆ Aut C32488-C3^2:2Dic12432,590
C323Dic12 = He34Q16φ: Dic12/C8S3 ⊆ Aut C321446-C3^2:3Dic12432,114
C324Dic12 = He35Q16φ: Dic12/C8S3 ⊆ Aut C321446C3^2:4Dic12432,177
C325Dic12 = C338Q16φ: Dic12/C12C22 ⊆ Aut C32144C3^2:5Dic12432,447
C326Dic12 = C339Q16φ: Dic12/C12C22 ⊆ Aut C32484C3^2:6Dic12432,459
C327Dic12 = C3×C325Q16φ: Dic12/C24C2 ⊆ Aut C32144C3^2:7Dic12432,484
C328Dic12 = C3312Q16φ: Dic12/C24C2 ⊆ Aut C32432C3^2:8Dic12432,500
C329Dic12 = C3×C323Q16φ: Dic12/Dic6C2 ⊆ Aut C32484C3^2:9Dic12432,424
C3210Dic12 = C337Q16φ: Dic12/Dic6C2 ⊆ Aut C32144C3^2:10Dic12432,446

Non-split extensions G=N.Q with N=C32 and Q=Dic12
extensionφ:Q→Aut NdρLabelID
C32.Dic12 = C72.C6φ: Dic12/C8S3 ⊆ Aut C321446-C3^2.Dic12432,119
C32.2Dic12 = C3⋊Dic36φ: Dic12/C12C22 ⊆ Aut C321444-C3^2.2Dic12432,65
C32.3Dic12 = C3×Dic36φ: Dic12/C24C2 ⊆ Aut C321442C3^2.3Dic12432,104
C32.4Dic12 = C24.D9φ: Dic12/C24C2 ⊆ Aut C32432C3^2.4Dic12432,168

׿
×
𝔽